I) المجموعة IN : تسمى المجموعة IN مجموعة الأعداد الصحيحة الطبيعية .
ونكتب :IN = {0; 1; 2; 3; 4; 5.......→}i .العدد 0 يسمى العدد الصحيح الطبيعي المنعدم .ويرمز لمجموعة الأعداد الصحيحة الطبيعية الغير المنعدمة ب *IN. ونكتب :IN* = {1; 2; 3; 4; 5.......→}1 .
نستعمل الرمز : (INا∋ 4) للدلالة على ان 4 هو عنصر من المجموعة.
نستعمل الرمز : (INا∌ 1,7) للدلالة على ان 1,7 ليس عنصر من المجموعة وذلك لانه ليس عددا صحيحا طبيعيا.II) الأعداد الزوجية – الأعداد الفردية :
كل مضاعف ل2 يسمى عدد زوجي والأعداد الصحيحة الطبيعية الاخرى تسمى اعداد فردية.
الأعداد الصحيحة الطبيعية الزوجية هي التي تكتب على شكل 2k حيث k عدد صحيح طبيعي، والاعداد الفردية هي الأعداد الصحيحة الطبيعية التي تكتب على شكل 2k+1 او (2k-1) حيث k عدد صحيح طبيعي .
امثلة :
12 عدد زوجي لان 6 × 2 = 12
138 عدد زوجي لان 69 × 2 = 138
III) قواسم عدد صحيح طبيعي - مضاعفات عدد صحيح طبيعي :
تعريف :
b و a عددان صحيحان طبيعيان،
يكون العدد b قاسم ل a اذا وجد عدد صحيح طبيعي n بحيث nا × a = b وفي هذه الحالة نكتب b I a ونقرا b يقسم a.
اذا كان b قاسم ل a فان a هو مضاعف ل b
امثلة : 5I75 لان 15 × 5 = 75 3I36 لان 12 × 3
= 36
12 × 15
= 180 اذن 15 قاسم ل 180 اذن 180 هو مضاعف ل15.
مضاعفات 3 :
M3 = {0 ;3 ;6 ;9 ;.......}1 مضاعفات 7 : M7 = {0; 7; 14; 21; 28; 35;.......}
1 مجموعة قواسم 24 :
D24 = {0; 1; 2; 3; 4; 6; 8
; 12; 24}
1مجموعة قواسم 21 : D21 = {1; 3; 7; 21}
1
- يكون العدد a قابل للقاسمة على 4 اذا كان العدد المكون من رقم وحداته وعشراته في هذا الترتيب مضاعفا للعدد 4.
مثال : 7836 يقبل القسمة على 4 .
5104 يقبل القسمة على 4 لان 4 مضاعف ل 4 .
- يكون العدد a قابل للقاسمة على 2 اذا كان رقم وحداته هو 0 او 2 ; 4 ; 6; 8 .
- يكون العدد a قابل للقاسمة على 5 اذا كان رقم وحداته هو 0 او 5 .
- يكون العدد a قابل للقاسمة على 3 اذا كان مجموعة ارقامه مضاعف ل 3 .
مثال : 117 يقبل القسمة على 3 لان 9 = 7
+ 1
+ 1 و 9
مضاعف ل 3 .
- يكون العدد a قابل للقاسمة على 6 اذا كان يقبل القسمة على 2 و 3 .
مثال : 7836 يقبل القسمة على 6 لانه يقبل القسمة على 2 وايضا يقبل القسمة على 3وذلك لان رقم وحداته هو 6 ومجموعة ارقامه 24 = 7 + 8 + 3 + 6 هو مضاعف ل 3 .
- يكون العدد a مضاعف ل 9 (اي يقبل القسمة على 9) اذا كان مجموع ارقامه مضاعف ل 9 .
مثال : 243 يقبل القسمة على 9 لان 9 = 3 + 4 + 2 و9 مضاعف ل 9 .
ملاحظات :
- كل عدد صحيح طبيعي هو إما عدد زوجي أو عدد فردي.
- العدد 0 مضاعف لجميع الأعداد الصحيحة الطبيعية.
- العدد 1 قاسم لجميع الأعداد الصحيحة الطبيعية.
- مجموع عددين زوجيين هو عدد زوجي.
- مجموع عددين فرديين هو عدد زوجي.
- مجموع عدد زوجي و عدد فردي هو عدد فردي.
IV) الأعداد الأولية :
تعريف :
a عدد صحيح طبيعي غير منعدم.
يكون العدد a أوليا اذا كان له قاسمان فقط (اي يقبل القسمة على عددين فقط) هما العدد 1 والعدد a .
الأعداد الأولية الأصغر من 100 هي : 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71;97 73; 79; 83; 89;
- هذه الأعداد أولية لانها لا تقبل القسمة الا على العدد 1 وعلى نفسها ويكون الخارج عددا صحيحا طبيعيا غير منعدم.
- هناك ما لا نهاية من الاعداد الأولية، وهذا مثال للاعداد المحصورة بين 0 و 100.
ملاحظة 1 :
يجب عدم الخلط بين عدد أولي وعدد فردي.
ملاحظة 2 :
كل عدد أولي يخالف 2 (اي ماعدا العدد 2) هو عدد فردي والعكس غير صحيح (اي ليس كل عدد فردي هو عدد أولي مثلا العدد 9 عدد فردي وليس عددا أوليا).
قاعدة :
يكون العدد a أوليا اذا كان لا يقبل القسمة على كل الاعداد الاولية P بحيث :مثال :
هل 571 عدد أولي ؟. العدد 571 هو عدد أولي لانه لا يقبل القسمة على الاعداد : 2; 3; 5; 7; 11; 13; 17; 19; 23. (الاعداد الاولية الاصغر من او تساوي 23,89).V) تفكيك عدد غير أولي إلى جداء عوامل أولية :
كل عدد صحيح طبيعي غير منعدم ويخالف 1 هو اما أولي او يكتب على شكل جداء من عوامل أولية وهذه الكتابة تسمى "التفكيك الأولي"
أمثلة 1 :
حدد التفكيك الأولي للاعداد : 436; 5024; 10816 ؟.
1) لدينا :
ولدينا 109 عدد أولي بتطبيق القاعدة السابقة اي لا يقبل القسمة على الأعداد الأولية
اذن التفكيك الأولي ل436 هو :
2) لدينا :
اذن :
ولدينا 157 عدد أولي (بتطبيق القاعدة السابقة).
3) لدينا :
اذن :
أمثلة 2 : اوجد التفكيك الأولي للاعداد :
a = 128 000 000 000 000
b = 64 000 000 000 000 000
لدينا :
ولدينا :
اذن :
لدينا :
ولدينا :
اذن :
VI) المضاعف المشترك الأصغر والقاسم المشترك الأكبر لعددين صحيحين طبيعيين غير منعدمين :
1) المضاعف المشترك الأصغر لعددين صحيحين طبيعيين غير منعدمين :
قاعدة المضاعف المشترك الأصغر لعددين : نأخذ بعد التفكيك الأعداد المشتركة المرفوعة لأكبر أس والغير المشتركة.
مثال : المضاعف المشترك الأصغر ل 100 و 25.
نقوم بالتفكيك
[size]
اذن المضاعف المشترك الأصغر ل 100 و
25 هو
: [/size]
[size]
تعريف : a و b عددان صحيحان طبيعيان غير منعدمان.
أصغر مضاعف مشترك غير منعدم للعددين a و b يسمى المضاعف المشترك الأصغر للعددين a و b ونرمز له ب : ا(a;b)اPPMC ا(Plus Petit Multiple Commun).[/size]
أمثلة : (ناخذ المثل السابق) حدد المضاعف المشترك الأصغر للعددين 25 و 100.
الحل :
مضاعفات 100 : M100 = {100 ;200 ;300.............}1
مضاعفات 25 : M25 = {25 ;50 ;75 ;100 ;125.....}1
وبالتالي : 100 = [size=9]ا(100;25)اPPMC[/size]
توضيح طر يقة تحديد المضاعف المشترك الأصغر للعددين a و b حيث :[size=9]1( a≥b ). [/size]
نقوم بتحديد مضاعفات a و b مع المقارنة بالتتابع ابتداء من أصغر مضاعف غير منعدم للعدد b هل هو مضاعف للعدد a ايضا فإن لم يكن كذلك ، نتابع البحث حتى نجد مضاعفا للعدد b ويكون من مضاعفات العدد a ايضا، أتوقف والعدد الذي حصلت فيه على هذا الجواب هو المضاعف المشترك الأصغر للعددين a و b .
مثال اخر : حدد المضاعف المشترك الأصغر للعددين 12 و 18.
الحل :
مضاعفات 12 : M12 = {12 ;24 ;36 ;48 ;60 ;72 ;.............}1
مضاعفات 18 : M18 = {18 ;36 ;54 ;72 ;90 ;...................}1
اذن : 36 = [size=9]ا(18;12)اPPMC[/size]
2) القاسم المشترك الأكبر لعددين صحيحين طبيعيين غير منعدمين :
قاعدة القاسم المشترك الأكبر : هي الأعداد المشتركة المرفوعة لأصغر أس.
مثال :
[size]
اذن القاسم المشترك الأكبر ل 100 و
25 هو
: [/size]
[size]
تعريف :[/size]
أكبر قاسم مشترك غير منعدم للعددين a و b يسمى القاسم المشترك الأكبر لهما ونرمز له ب : [size=9]ا(a;b)اPGDC ا(Plus Grand Diviseur Commun). [/size]
أمثلة : (ناخذ المثل السابق) حدد قواسم 100 ثم قواسم 25 ثم استنتج أكبر قاسم مشترك للعددين 25 و 100.
الحل :
مجموعة قواسم العدد 100 هي : D100 = {1; 2; 4; 5; 10; 20; 25; 50; 100}1
مجموعة قواسم العدد 25 هي : D25 = {1; 5; 25}1
وبالتالي فان أكبر قاسم مشترك للعددين 100 و 25 هو : 25 = [size=9]ا(100;25)اPGDC[/size]
توضيح طر يقٌة تحديد القاسم المشترك الأكبر لعددين صحيحين طبيعيين غير منعدمين :
لتحديد قواسم العدد 18، نبحث عن جميع الأعداد الصحيحة الطبيعية الغير المنعدمة ( اي المنتمية الى *IN ) المحصورة بين 1 و 18 والتي اذا ما قمنا بقسمة العدد 18 عليها حصلنا على خارج ينتمي الى IN.
مثال اخر :حدد قواسم 12 ثم قواسم 18 ثم استنتج أكبر قاسم مشترك للعددين 12 و 18.
الحل :
قواسم العدد 12 هي : D12 = {1; 2; 3; 4; 6; 12}1
قواسم العدد 18 هي : D18 = {1; 2; 3; 6; 9; 18}1
أكبر قاسم مشترك للعددين 12 و 18 هو : 6 = [size=9]ا(18;12)اPGDC[/size]
ملاحظة : الاعداد 5; 7; 8; 9; 10; 11 ليست قواسم للعدد 12 لان خارج قسمتها هي اعداد عشرية ولا تنتمي الى مجموعة الأعداد الصحيحة الطبيعية IN.